/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "string.h" #include "math.h" #include "stdlib.h" #include "stdio.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; DAC_HandleTypeDef hdac1; DAC_HandleTypeDef hdac2; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); static void MX_ADC2_Init(void); static void MX_DAC1_Init(void); static void MX_DAC2_Init(void); static void MX_USART2_UART_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void w_calibration(void); ADC_ChannelConfTypeDef sConfig= {0}; int w_uart_cr=0; int w_uart_r_cnt=0; char w_uart_r[100]={0}; char w_uart_r_1[2]={0}; char w_uart_t[100]; uint32_t w_adc; double w_adc_d=0; uint32_t w_dac; double w_dac_d=0; uint16_t * VREF_R; double w_vref; double w_vdda; char w_dac_str[10]; double w_ch1_out=0; double w_ch1_f=0; //DAC1-1 double w_ch1_s=0; //ADC2-2 double w_ch2_out=0; double w_ch2_f=0; //DAC2-1 double w_ch2_s=0; //ADC2-4 double w_ch3_s=0; //ADC1-1 double w_ch4_s=0; //ADC1-2 double w_ch5_s=0; //ADC1-4 double w_ch6_s=0; //ADC1-11 /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); MX_ADC2_Init(); MX_DAC1_Init(); MX_DAC2_Init(); MX_USART2_UART_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ int i; VREF_R=(uint16_t *)0x1FFFF7BA; //typical 1.23V Vref Register w_vref=((double)*VREF_R/(double)4096.0)*3.3; //1.2238; /* ADC1&2 Caliblation and Polling VREF & DDA ****************************/ HAL_Delay(500); w_calibration(); sConfig.Channel = ADC_CHANNEL_1; HAL_ADC_ConfigChannel(&hadc1, &sConfig); sConfig.Channel = ADC_CHANNEL_2; HAL_ADC_ConfigChannel(&hadc2, &sConfig); /**********************************************************************/ HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (uint32_t)0); HAL_DAC_Start(&hdac1, DAC_CHANNEL_1); HAL_DAC_SetValue(&hdac2, DAC_CHANNEL_1, DAC_ALIGN_12B_R, (uint32_t)0); HAL_DAC_Start(&hdac2, DAC_CHANNEL_1); HAL_UART_Receive_IT(&huart2, (uint8_t*)w_uart_r_1, 1); while (1) { if(w_uart_cr==1){ HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_3); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_4, GPIO_PIN_SET); HAL_Delay(20); w_uart_cr=0; w_uart_r_cnt=strlen(w_uart_r); //HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_r, strlen(w_uart_r),100); //HAL_UART_Transmit(&huart2, (uint8_t*)"\r\n",2, 20); if(strncmp((char*)w_uart_r,"DAC1=",5)==0){ if(w_uart_r_cnt==11){ w_dac_str[0]=w_uart_r[5]; w_dac_str[1]=w_uart_r[6]; w_dac_str[2]=w_uart_r[7]; w_dac_str[3]=w_uart_r[8]; w_dac_str[4]=w_uart_r[9]; w_dac_str[5]=w_uart_r[10]; w_dac_str[6]=0x00; w_dac_d=atof(w_dac_str); if(w_dac_d>=0 && w_dac_d<=3.3){ strcpy((char*)w_uart_t,"OK\r\n"); HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_t, strlen((char*)w_uart_t), 100); w_ch1_out=w_dac_d; } } } if(strncmp((char*)w_uart_r,"DAC2=",5)==0){ if(w_uart_r_cnt==11){ w_dac_str[0]=w_uart_r[5]; w_dac_str[1]=w_uart_r[6]; w_dac_str[2]=w_uart_r[7]; w_dac_str[3]=w_uart_r[8]; w_dac_str[4]=w_uart_r[9]; w_dac_str[5]=w_uart_r[10]; w_dac_str[6]=0x00; w_dac_d=atof(w_dac_str); if(w_dac_d>=0 && w_dac_d<=3.3){ strcpy((char*)w_uart_t,"OK\r\n"); HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_t, strlen((char*)w_uart_t), 100); w_ch2_out=w_dac_d; } } } if(w_uart_r_cnt==3){ if(strncmp((char*)w_uart_r,"cal",3)==0){ w_calibration(); } if(strncmp((char*)w_uart_r,"ch1",3)==0){ sprintf((char*)w_uart_t,"CH1=%.4f\r\n",w_ch1_s); HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_t, strlen((char*)w_uart_t), 100); } if(strncmp((char*)w_uart_r,"ch2",3)==0){ sprintf((char*)w_uart_t,"CH2=%.4f\r\n",w_ch2_s); HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_t, strlen((char*)w_uart_t), 100); } if(strncmp((char*)w_uart_r,"ch3",3)==0){ sprintf((char*)w_uart_t,"CH3=%.4f\r\n",w_ch3_s); HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_t, strlen((char*)w_uart_t), 100); } if(strncmp((char*)w_uart_r,"ch4",3)==0){ sprintf((char*)w_uart_t,"CH4=%.4f\r\n",w_ch4_s); HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_t, strlen((char*)w_uart_t), 100); } if(strncmp((char*)w_uart_r,"ch5",3)==0){ sprintf((char*)w_uart_t,"CH5=%.4f\r\n",w_ch5_s); HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_t, strlen((char*)w_uart_t), 100); } if(strncmp((char*)w_uart_r,"ch6",3)==0){ sprintf((char*)w_uart_t,"CH6=%.4f\r\n",w_ch6_s); HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_t, strlen((char*)w_uart_t), 100); } } for(i=0;i<20;i++){w_uart_r[i]=0;} HAL_GPIO_WritePin(GPIOB, GPIO_PIN_4, GPIO_PIN_RESET); HAL_UART_Abort_IT(&huart2); HAL_UART_Receive_IT(&huart2, (uint8_t*)w_uart_r_1, 1); w_uart_cr=0; } // ch1-f DAC1-1 output **************************************************************** w_ch1_f=w_ch1_f+(w_ch1_out-w_ch1_s)/2; if(w_ch1_f<0){w_ch1_f=0;} if(w_ch1_f>w_vdda){w_ch1_f=w_vdda-0.001;} w_dac=(uint32_t)((double)(w_ch1_f/w_vdda)*(double)4096.0); HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_1, DAC_ALIGN_12B_R, w_dac); // ch2-f DAC2-1 output **************************************************************** w_ch2_f=w_ch2_f+(w_ch2_out-w_ch2_s); if(w_ch2_f<0){w_ch2_f=0;} if(w_ch2_f>w_vdda){w_ch2_f=w_vdda-0.001;} w_dac=(uint32_t)((double)(w_ch2_f/w_vdda)*(double)4096.0); HAL_DAC_SetValue(&hdac2, DAC_CHANNEL_1, DAC_ALIGN_12B_R, w_dac); // ch1-s ADC2-2 input **************************************************************** sConfig.Channel = ADC_CHANNEL_2; HAL_ADC_ConfigChannel(&hadc2, &sConfig); HAL_ADC_Start(&hadc2); HAL_ADC_PollForConversion(&hadc2, 100); w_adc=HAL_ADC_GetValue(&hadc2); w_ch1_s=((double)w_adc/(double)4096.0)*w_vdda; // ch2-s ADC2-4 input **************************************************************** sConfig.Channel = ADC_CHANNEL_4; HAL_ADC_ConfigChannel(&hadc2, &sConfig); HAL_ADC_Start(&hadc2); HAL_ADC_PollForConversion(&hadc2, 100); w_adc=HAL_ADC_GetValue(&hadc2); w_ch2_s=((double)w_adc/(double)4096.0)*w_vdda; // ch3-s ADC1-1 input **************************************************************** sConfig.Channel = ADC_CHANNEL_1; HAL_ADC_ConfigChannel(&hadc1, &sConfig); HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 100); w_adc=HAL_ADC_GetValue(&hadc1); w_ch3_s=((double)w_adc/(double)4096.0)*w_vdda; // ch4-s ADC1-2 input **************************************************************** sConfig.Channel = ADC_CHANNEL_2; HAL_ADC_ConfigChannel(&hadc1, &sConfig); HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 100); w_adc=HAL_ADC_GetValue(&hadc1); w_ch4_s=((double)w_adc/(double)4096.0)*w_vdda; // ch5-s ADC1-4 input **************************************************************** sConfig.Channel = ADC_CHANNEL_4; HAL_ADC_ConfigChannel(&hadc1, &sConfig); HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 100); w_adc=HAL_ADC_GetValue(&hadc1); w_ch5_s=((double)w_adc/(double)4096.0)*w_vdda; // ch6-s ADC1-11 input **************************************************************** sConfig.Channel = ADC_CHANNEL_11; HAL_ADC_ConfigChannel(&hadc1, &sConfig); HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 100); w_adc=HAL_ADC_GetValue(&hadc1); w_ch6_s=((double)w_adc/(double)4096.0)*w_vdda; /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL8; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12; PeriphClkInit.Adc12ClockSelection = RCC_ADC12PLLCLK_DIV1; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_MultiModeTypeDef multimode = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure the ADC multi-mode */ multimode.Mode = ADC_MODE_INDEPENDENT; if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief ADC2 Initialization Function * @param None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Common config */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 1; hadc2.Init.DMAContinuousRequests = DISABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc2.Init.LowPowerAutoWait = DISABLE; hadc2.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_2; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } /** * @brief DAC1 Initialization Function * @param None * @retval None */ static void MX_DAC1_Init(void) { /* USER CODE BEGIN DAC1_Init 0 */ /* USER CODE END DAC1_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC1_Init 1 */ /* USER CODE END DAC1_Init 1 */ /** DAC Initialization */ hdac1.Instance = DAC1; if (HAL_DAC_Init(&hdac1) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE; if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC1_Init 2 */ /* USER CODE END DAC1_Init 2 */ } /** * @brief DAC2 Initialization Function * @param None * @retval None */ static void MX_DAC2_Init(void) { /* USER CODE BEGIN DAC2_Init 0 */ /* USER CODE END DAC2_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC2_Init 1 */ /* USER CODE END DAC2_Init 1 */ /** DAC Initialization */ hdac2.Instance = DAC2; if (HAL_DAC_Init(&hdac2) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputSwitch = DAC_OUTPUTSWITCH_ENABLE; if (HAL_DAC_ConfigChannel(&hdac2, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC2_Init 2 */ /* USER CODE END DAC2_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 38400; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3|GPIO_PIN_4, GPIO_PIN_RESET); /*Configure GPIO pins : PB3 PB4 */ GPIO_InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart){ if(w_uart_r_1[0] == 0x0d || w_uart_r_1[0] == 0x0a){ w_uart_cr=1; }else{ strcat(w_uart_r,w_uart_r_1); } HAL_UART_Receive_IT(&huart2, (uint8_t*)w_uart_r_1, 1); } void w_calibration(void){ HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED); HAL_ADCEx_Calibration_Start(&hadc2, ADC_SINGLE_ENDED); //sConfig.Channel = ADC_CHANNEL_1; sConfig.Channel = ADC_CHANNEL_VREFINT; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.SamplingTime = ADC_SAMPLETIME_61CYCLES_5; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; HAL_ADC_ConfigChannel(&hadc1, &sConfig); HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 100); w_adc=HAL_ADC_GetValue(&hadc1); HAL_ADC_Stop(&hadc1); w_vdda=(double)((double)4096.0/(double)w_adc)*w_vref; sprintf(w_uart_t,"STM32F303 2020.10.12 V04.3 384KBPS VDDA= %.4fV VREF= %.4fV\r\n",w_vdda,w_vref); HAL_UART_Transmit(&huart2, (uint8_t*)w_uart_t, strlen((char*)w_uart_t), 100); HAL_UART_AbortReceive_IT(&huart2); HAL_UART_Receive_IT(&huart2, (uint8_t*)w_uart_r_1, 1); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/